
A Faster Maximum Cardinality Matching Algorithm
with Applications in Machine Learning

Nathaniel Lahn∗

School of Computing and Information Sciences
Radford University
Radford, VA 24142

nlahn@radford.edu

Sharath Raghvendra
Department of Computer Science

Virginia Tech Blacksburg, VA 24061
sharathr@vt.edu

Jiacheng Ye
Department of Computer Science

Virginia Tech Blacksburg, VA 24061
yjc0513@vt.edu

Abstract

Maximum cardinality bipartite matching is an important graph optimization prob-
lem with several applications. For instance, maximum cardinality matching in a
δ-disc graph can be used in the computation of the bottleneck matching as well as
the∞-Wasserstein and the Lévy-Prokhorov distances between probability distribu-
tions. For any point sets A,B ⊂ R2, the δ-disc graph is a bipartite graph formed
by connecting every pair of points (a, b) ∈ A × B by an edge if the Euclidean
distance between them is at most δ. Using the classical Hopcroft-Karp algorithm,
a maximum-cardinality matching on any δ-disc graph can be found in Õ(n3/2)
time. 2 In this paper, we present a simplification of a recent algorithm (Lahn and
Raghvendra, JoCG 2021) for the maximum cardinality matching problem and
describe how a maximum cardinality matching in a δ-disc graph can be computed
asymptotically faster than O(n3/2) time for any moderately dense point set. As
applications, we show that if A and B are point sets drawn uniformly at random
from a unit square, an exact bottleneck matching can be computed in Õ(n4/3)
time. On the other hand, experiments suggest that the Hopcroft-Karp algorithm
seems to take roughly Θ(n3/2) time for this case. This translates to substantial
improvements in execution time for larger inputs.

1 Introduction

Computing a maximum cardinality matching is a fundamental graph optimization problem. With
origins in economics and logistics, matchings have found numerous applications. Computing popular
distances between distributions, such as the Wasserstein distance as well as the Lévy-Prokhorov
distance, can be reduced to a bipartite matching problem. In this paper, we consider the δ-disc graph
matching which is the following:

Given two sets A and B of n two dimensional points and a parameter δ > 0, a δ-disc graph Gδ is a
bipartite graph obtained by connecting any pair of vertices (a, b) ∈ A×B with an edge provided that
the Euclidean distance between a and b is at most δ, i.e., ∥a− b∥ ≤ δ. Let m be the number of edges

∗Authors are ordered by last name. All authors contributed equally to this work.
2We use Õ(·) to suppress poly-logarithmic terms in the complexity.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

in the graph Gδ . A matching M is a set of vertex-disjoint edges in Gδ . In the δ-disc graph matching
problem, we wish to compute a maximum cardinality matching in Gδ, i.e., a matching that has the
largest number of edges.

Any algorithm for computing a δ-disc graph matching can also be used to compute a bottleneck
matching as well as the Lévy-Prokhorov distance, both of which are defined next. Let M ⊆ A×B
be any perfect matching of A and B, which is a matching where every vertex of A is matched, i.e.,
|M | = n. The edge of M with the largest Euclidean length is its bottleneck edge. The bottleneck
matching is a perfect matching M∗ whose bottleneck edge length is minimized. The Euclidean length
of the bottleneck edge of M∗ is the bottleneck distance between A and B.

Distances between distributions: Next, consider the case where A and B define discrete distri-
butions PA and PB and let every point a ∈ A (resp. b ∈ B) carry a probability of 1/n, i.e.,
PA(a) = 1/n (resp. PB(b) = 1/n). The ∞-Wasserstein distance between PA and PB , de-
noted by W∞(PA,PB), is simply the bottleneck distance between the point sets A and B. The
Lévy-Prokhorov distance between PA and PB is defined as follows: For ε > 0 and any sub-
set X ⊆ A (resp. Y ⊆ B), let Xε = {b ∈ B | ∃a ∈ X such that ∥a − b∥ ≤ ε} (resp.
Y ε = {a ∈ A | ∃b ∈ Y such that ∥a − b∥ ≤ ε}). Note that Xε ⊆ B and Y ε ⊆ A. We say
that the Lévy-Prokhorov [34] distance π(PA,PB) is equal to the smallest value of ε for which the
following property is true:

∀X ⊆ A,PA(X) ≤ PB(X
ε) + ε and, ∀Y ⊆ B,PB(Y) ≤ PA(Y

ε) + ε;

here PA(X) =
∑︁

a∈X PA(a) = |X|/n and PB(Y) =
∑︁

b∈Y PB(b) = |Y |/n. We can, therefore,
write this condition as

∀X ⊆ A, |X| ≤ |Xε|+ εn and ∀Y ⊆ B, |Y | ≤ |Y ε|+ εn. (1)

Determining if the exact bottleneck distance (equivalently W∞(PA,PB)) is ≤ δ can be done by
simply finding the maximum cardinality matching M in Gδ . It is easy to see that M is perfect if and
only if the bottleneck distance is at most δ. Similarly, by applying Hall’s theorem, one can show
that π(PA,PB) ≤ ε if and only if the maximum cardinality matching M in Gε has a size of at least
(1− ε)n. Thus, the δ-disc graph matching directly relates to computing∞-Wasserstein distance as
well as the Lévy-Prokhorov distance between probability distributions.

Computing δ-disc graph matching: One can use any of-the-shelf matching algorithm [18, 31,
33, 39] to compute a maximum cardinality matching in a δ-disc graph. For instance, using the
well-known Hopcroft-Karp algorithm will lead to an execution time of O(m

√
n) on any δ-disc graph.

The HK-Algorithm executes in phases. Each phase takes O(m) time, and, in the worst-case, the
algorithm converges to a maximum matching in O(

√
n) phases. The best-known exact algorithm for

computing the exact bottleneck matching combines geometric data structures with the HK-algorithm
in order to reduce the execution time of each phase from O(m) to Õ(n). As a result, they obtain an
exact bottleneck matching in Õ(n3/2) time.

Inspired by a series of algorithms for weighted matching in graphs with small separators [4, 27],
Lahn and Raghvendra [28] presented a weighted approach to the maximum cardinality matching
problem. This LR algorithm identifies a set of “edge separators" incident on ω “boundary vertices”.
These edges are assigned a weight of 1 and all other edges receive a weight of 0. A property
satisfied by these separator vertices is that after their removal, every connected component in the
graph has no more than r vertices. Then, they present an algorithm to compute a perfect matching
in O(m

√
r + m

√
ω + mrω/n log n) time. As an application of their result, they show how to

compute the bottleneck distance of any point sets A and B within a multiplicative factor of (1 + ε) in
Õ(n4/3poly(1/ε)) time. The LR algorithm assigns dual weights to vertices and is similar in style to
the Kuhn-Munkres [24] and Gabow-Tarjan [15] algorithms. The dual weights on vertices play a vital
role in the proofs of correctness and efficiency of the LR algorithm.

In this paper, we make the following contributions:

• We remove the need to maintain dual weights in the LR algorithm, resulting in a significantly
simpler algorithm.

2

• Using this algorithm, we show how to find a maximum cardinality matching in a unit-disc
graph Gδ in time Õ(n4/3k1/3) where k is the maximum number of points of A∪B contained
in any disc of radius δ. Note that our algorithm is asymptotically faster than the classical
Hopcroft-Karp based algorithm when k = o(

√
n).

• Using our algorithm for δ-disc graph matching, we show how to compute the exact bottleneck
distance between point sets A and B. When PA and PB are discrete distributions with
each point having probability 1/n, the bottleneck distance can be used to compute the
distances W∞(PA,PB)) and π(PA,PB). We are not aware of any previous polynomial
time algorithms to compute the Lévy-Prokhorov distance. When A,B are chosen uniformly
at random from a unit square, our algorithm for the exact bottleneck distance runs in Õ(n4/3)
time. All previous algorithms take Ω(n3/2) time.

• We run experiments for the case where A and B are chosen uniformly at random from a unit
square. Our experiments suggest that the Hopcroft-Karp algorithm on Gδ takes Θ(n3/2)

time. In contrast, our algorithm runs substantially faster and executes in Õ(n4/3) time.

Note that, for the HK-algorithm, the upper bound of O(
√
n) phases is only in the worst-case. As

noted by Motwani [32], the Hopcroft-Karp algorithm converges, with high probability, to a maximum
matching in O(log n) phases for expander graphs in general and Erdős-Rényi random graphs in
particular. Similarly, does the HK algorithm execute asymptotically fewer than

√
n iterations when

used to compute bottleneck matchings? Interestingly, our experiments suggest that the answer to
this question may be in the negative. Based on our experimental results, when A and B are drawn
uniformly at random from a unit square and when δ is set to the bottleneck distance, the number of
phases seem to grow at the rate of Ω(

√
n). Therefore, bottleneck matching on random point sets may

represent a natural hard instance for the HK-Algorithm. In this paper, we show how to overcome the
Ω(n3/2) barrier for uniformly distributed point sets by developing an Õ(n4/3) time algorithm.

For any ε > 0 and any point set A∪B, the LR algorithm can also be used to compute a multiplicative
(1 + ε)-approximation of the bottleneck matching in Õ(n4/3poly(1/ε)) time. This is done by using
a grid where the side-length of each cell is a function of ε. The algorithm rounds every point to the
closest cell center and finds a δ-disc graph matching using the LR algorithm. See Section 6 of [28] for
details. One can also use a similar approach to compute a multiplicative (1 + ε) approximation of the
Lévy-Prokhorov distance. Replacing the original LR algorithm with our dual-free implementation
leads to simpler approximation algorithms.

Applications: Wasserstein distance has found numerous applications in machine learning and
computer vision [3, 5, 8, 10, 14, 36]. Due to these applications, computing approximations of
Wasserstein distances has received substantial attention [2, 9, 12, 26, 30, 35]. However, exact
algorithms (even for discrete distributions) have a relatively high execution time [15, 24, 39]. The
Lévy-Prokhorov distance have been extensively studied for its theoretical properties [11, 38]. For
instance, Lévy-Prokhorov distance metrizes weak convergence on any separable metric space [19].
However, a brute-force algorithm based on the definition of this metric will require a search on
exponentially many possible subsets causing it to seldom be used in practice [16]. However, we use
Hall’s theorem to show that the computation of the Lévy-Prokhorov metric reduces to the δ-disc
graph matching problem and so, it is only as hard as computing the∞-Wasserstein distance, at least
for discrete distributions of the type PA and PB described above.

In this paper, we provide exact algorithms for computing the∞-Wasserstein and the Lévy-Prokhorov
distances for 2-dimensional discrete distributions. Our algorithms can be useful in several scenarios.
For instance, one can estimate Lévy-Prokhorov distances between any two fixed-dimensional continu-
ous distributions by simply computing the distances between samples drawn from these distributions.
From the fact that the Lévy-Prokhorov distance metrizes weak convergence, for large enough samples
we can get accurate distance estimates. Faster high-precision algorithms are critical in obtaining such
estimates; see [7, 6]. For high dimensional discrete distributions, Wasserstein distance is sometimes
estimated by embedding them into a lower dimensional space and computing high precision solution
in this space. For example, see the sliced Wasserstein distance [23].

In the emerging area of topological data analysis, high dimensional point clouds are characterized by
two-dimensional point sets called persistence diagrams where each point represents the so-called birth
and death times of a topological feature. Different high-dimensional point clouds can be compared
by computing the bottleneck distance between the corresponding diagrams [17, 22, 1]. This has

3

led to development of practical implementations of bottleneck matching algorithms [17, 22]. More
recently, other Wasserstein distances between persistence diagrams have also been considered. See
for instance [25, 40].

The special case of computing bottleneck matching for point sets A and B that are drawn uniformly at
random from a unit square has also received considerable attention. For instance, it has been used in
the context of testing pseudo-random generators, average case analysis of bin packing algorithms [29],
and also in statistics for analyzing the Glivenko-Cantelli convergence of empirical measures [37].
δ-disc graphs have other applications as well, including in the modeling of the topology of ad-hoc
wireless networks [20].

2 Matching algorithms

In this section, we present and compare two algorithms for solving the maximum cardinality matching
problem on an arbitrary graph: The Hopcroft-Karp (HK) algorithm [18], and our simplification of the
LR algorithm [28]. In section 2.1, we introduce the basic definitions used by most combinatorial
matching algorithms and give an overview of the HK algorithm. In section 2.2, we present our
simplification of the LR algorithm, highlighting the differences it has from the HK algorithm.

2.1 Preliminaries

Given any matching M , let AF and BF denote the vertices of A and B respectively that are not
matched in M . We refer to these vertices as free vertices. An alternating path P is a path that
alternates between edges that are in the matching and those that are not in the matching. An
augmenting path is an alternating path that starts and ends at a free vertex. We define the length of P
as the number of edges in P .

We can augment a matching M along an augmenting path P by updating the matching to M ←
M ⊕ P ; where ⊕ denotes the symmetric difference operator. It is easy to see that augmenting a
matching along an augmenting path P increases the size of the matching M by 1. Furthermore, it
can be shown that G has no augmenting paths with respect to a matching M if and only if M has
maximum cardinality. These observations are the basis of the following commonly-used approach
for computing a maximum-cardinality matching: repeatedly compute an augmenting path P with
respect to M and augment M along P until M has maximum cardinality. Since the largest possible
matching has size at most n, any such algorithm will arrive at a maximum-cardinality matching after
n augmentations. This is the approach used by the classical Ford-Fulkerson and HK algorithms
as well as the recent LR algorithm. However, the algorithms differ in the details of how these
augmenting paths are found.

Residual graph: Given a matching M , the residual graph GM is a directed graph that assists in
finding augmenting paths. The graph GM contains the same set of vertices V as G. For any edge
(a, b) in G, if (a, b) ∈ M then we add an edge directed from a to b to GM . Otherwise, we add an
edge directed from b to a to GM . Furthermore, we create a source vertex s and a sink vertex t with
the following additional edges. For each free vertex b ∈ BF , we add an edge (s, b) directed from the
source s to b in GM and for each free vertex a ∈ AF we add an edge from a to the sink t in GM .
Note that, for the residual graph, we use (u, v) to denote an edge directed from u to v. On the other
hand, for the undirected graph G, we may use (u, v) and (v, u) interchangeably to represent the same
edge between vertices u and v. Consider any directed path P from s to t in the residual graph. Note
that removing s and t from P will result in an augmenting path. In the Ford-Fulkerson algorithm, a
single augmenting path can be found in O(m) time using any common graph search algorithm such
as breadth-first search (BFS) or depth-first search (DFS), leading to an O(mn) time algorithm. The
HK and LR algorithms both improve upon this running time by finding potentially many augmenting
paths in each iteration.

HK algorithm: Initially, let M = ∅. The HK algorithm executes in phases. A phase is divided up
into two stages. The first stage executes a BFS starting from s and identifies the length of the shortest
path (path with the fewest edges) in GM from s to every other vertex in GM . Let ℓu be the length
of the shortest path from s to u and let ℓ = ℓt. The algorithm then computes an admissible graph
A consisting of all edges (u, v) in GM such that (a) ℓu and ℓv are at most ℓ and (b) ℓv = ℓu + 1.
Note that these edges capture the set of all minimum-length augmenting paths in GM . The second

4

stage iteratively conducts multiple partial DFSs that start from s and terminate early if a path to t
is found. Following the termination of a partial-DFS, all edges visited by it are removed from the
residual graph. The algorithm proceeds to the next phase if a partial-DFS terminates without finding
a path from s to t. It can be shown that, in each phase, the HK algorithm finds a maximal set of
vertex-disjoint shortest augmenting paths in GM . Each phase involves execution of a single BFS and
multiple partial DFSs. Since no two executions of DFS visit the same edge, the combined execution
time of the multiple partial DFSs is bounded by O(m).

Hopcroft and Karp showed that the length of the shortest augmenting path increases by at least 1
after each phase. Therefore, after

√
n phases, the shortest augmenting path has length at least

√
n.

Using this, they showed that there are no more than
√
n free vertices remaining, all of which can be

matched by augmenting along an additional O(
√
n) augmenting paths. Thus, the total number of

phases executed by the algorithm is O(
√
n). Since each phase takes O(m) time, the total time taken

by the algorithm is O(m
√
n). Somewhat surprisingly, Hopcroft and Karp [18] also showed that the

total length of all n augmenting paths, across all phases, is only O(n log n).

2.2 A simplified implementation of the LR algorithm

Recently, Lahn and Raghvendra presented an algorithm [28] to compute a maximum cardinality
matching. Their algorithm resembles the Kuhn-Munkres algorithm for weighted matching. In this
section, we present a cleaner implementation of the LR algorithm. These simplifications result in a
closer resemblance to the HK algorithm. Unlike the LR algorithm, our algorithm does not maintain
any dual weights. In the following, we describe and contrast our algorithm with the HK-algorithm.

Apart from a bipartite graph G(V,E), we are also given a subset ES ⊆ E of “separator edges” as
input. For any separator edge (u, v) ∈ ES , we denote the vertices u and v as boundary vertices. Let
B be the set of all boundary vertices. The analysis of the algorithm depends on ω = |B| and another
parameter r that is defined next. Consider the graph G′(V,E \ ES). Let P = {P1, . . . ,Pt} be the
set of connected components of G′ and let Vi and Ei be the set of vertices and edges of Pi for all
1 ≤ i ≤ t. We refer to each Pi in G′ as a piece of the original graph G. Let r = maxPi∈P |Vi|, i.e.,
the size of the piece of G with the largest number of vertices.

Setting weights on the edges of the graph G and its residual graph GM : For any edge (u, v) ∈ E,
we assign it a weight w(u, v). For any separator edge (u, v) ∈ ES , we set w(u, v) to 1. For any other
edge (u′, v′) ∈ E \ ES , we set w(u′, v′) to 0. Every edge (u, v) in the residual graph inherits the
weight of the corresponding edge (u, v) in G(V,E). All edges incident on the source s and the sink t
in GM receive a weight of 0. For any path P , its weight is simply the sum of the weights of its edges.

Preprocessing: In the preprocessing step, our algorithm finds a maximum cardinality matching for
each piece by applying the HK-Algorithm. Let M be the union of these matchings computed across
all pieces. At the end of this step, the difference |M∗| − |M | is O(ω), where M∗ is the maximum
cardinality matching in G. So, our algorithm has to find an additional O(ω) augmenting paths in
order to compute a maximum cardinality matching.

The remaining O(ω) unmatched vertices are subsequently matched in phases. Like the HK algorithm,
each phase of our algorithm consists of two stages. These stages somewhat resemble the stages of the
HK algorithm. We highlight the differences in the description below.

Stage 1: In the first stage, our algorithm finds, for any vertex v ∈ V , the minimum weight path from
s to v in the residual graph GM using the weights w(·, ·). Note that, since every edge weight is either
0 or 1, a standard BFS implementation can be modified to support such a minimum-weight search
algorithm in O(m) time by simply prioritizing edges of weight 0 over edges of weight 1. We call this
modified version of BFS, 0/1 BFS. For any vertex v ∈ V , let ℓv be the weight from s to v in GM

as computed by the 0/1 BFS and let ℓ = ℓt. Any edge (u, v) of GM is admissible if ℓu, ℓv ≤ ℓ and
ℓv = ℓu + w(u, v). The admissible graph A is identical to GM , except it contains only admissible
edges. Similar to the HK algorithm, it can be shown that the admissible graph A captures every
minimum-weight augmenting path.

Stage 2: The second stage of our algorithm finds a set of shortest augmenting paths (by weight).
It does so by iteratively conducting partial-DFSs from s until no augmenting path is found. Each
partial-DFS immediately terminates if an augmenting path P is found. Let K be the set of affected
pieces, which are pieces that contain at least one edge of P . Unlike in the HK-Algorithm, the

5

matching M is immediately augmented along P and every edge visited by this partial-DFS that does
not belong to an affected piece is deleted. Note that any edge from an affected piece that was visited
by this partial-DFS does not get deleted and could be revisited by a later partial-DFS. In other words,
edges in an affected piece can be visited multiple times within the same phase.

Differences with HK algorithm: The main differences between our algorithm and the HK algorithm
are:

(1) Our algorithm assigns weights of 0 and 1 to the edges. No weights are assigned in the HK
algorithm.

(2) Our algorithm has a preprocessing step that computes a maximum cardinality matching
within each piece.

(3) In Stage 1, our algorithm executes a 0/1-BFS instead of the BFS executed by HK algorithm.

(4) In Stage 2 of our algorithm, the partial-DFS reuses edges from affected pieces. As a result,
in each phase, our algorithm may find augmenting paths that are not vertex-disjoint.

Differences (1) – (3) between HK algorithm and our algorithm do not impact the execution time of the
algorithm by any more than a small constant factor. See Section F of the supplement for a discussion
on this. The critical difference between the two algorithms is (4). Unlike the HK algorithm, Stage 2
of our algorithm reuses edges from affected pieces and computes a set of augmenting paths that are
not necessarily vertex-disjoint. This allows for computing many more augmenting paths within each
phase.

As we show later, the total number of phases executed as well as the augmenting paths computed
by our algorithm are identical to those computed by the LR algorithm. Therefore, the analysis of
Lahn and Raghvendra can be directly applied to our algorithm. They show that after each phase, the
weight of the shortest augmenting path increases by at least one. After

√
ω phases, they show that

there are O(
√
ω) free vertices which can be matched using an additional O(

√
ω) phases. Thus the

total number of phases can be bounded by O(
√
ω).

Edge revisits cause the execution time of a phase to increase. Note that an edge can be revisited only
if it was inside an affected piece when it was most recently visited. Lahn and Raghvendra show that
the total number of affected pieces is O(ω logω) (a piece that is affected k times is counted k times
in this sum). For graphs that admit recursive separators (such as planar and graphs with excluded
minors), they show that the number of edges for any piece can be bounded by O(mr/n) leading to
an O(mrω

n logω) bound on the total number of revisits.

Theorem 1. Consider a graph G and a set of separator edges. Suppose each piece has at most
O(mr/n) edges. Our algorithm computes a maximum cardinality matching in O(m

√
r +m

√
ω +

mrω
n log n) time.

For our algorithm, the assumption on an upper bound on the number of edges within each piece can
be eliminated when graphs, such as those considered in this paper, support a dynamic data structure
D of the following form: D can store any subset A′ ⊆ A of vertices and, given any query vertex
b ∈ B, it can return a vertex a ∈ A′ that minimizes the weight of the edge (b, a). Note that the weight
of (b, a) will be 1 only if every edge from b to any vertex a′ ∈ A′ has a weight of 1. If no edge
exists between b and any vertex of A′, then the data structure returns NULL. Suppose that D supports
arbitrary insertions and deletions from A′, as well as queries, each in Φ(n) time. Then, one can use
this data structure to dynamically maintain the set of unvisited nodes of A during a 0/1 BFS or DFS.
Consequently, one can execute 0/1 BFS and DFS in time O(nΦ(n)). As a result, the execution time
of our algorithm can be improved to O(nΦ(n)

√
r + nΦ(n)

√
ω + rωΦ(n) log n). In contrast, using

D to execute a Hungarian Search inside the LR algorithm seems challenging.

Theorem 2. Given a graph G that supports a dynamic nearest neighbor data structure with query
and update time of Φ(n), a maximum cardinality matching can be computed by our algorithm in
O(Φ(n)(n

√
r + n

√
ω + rω log n)). The HK algorithm computes a maximum cardinality matching

in O(n3/2Φ(n)) time.

Equivalency to original LR algorithm: The original algorithm maintains a dual weight y(v) for
every vertex v ∈ A ∪B at any point during the algorithm. For any edge (a, b) ∈ (A×B) ∩ E, the
dual weights satisfy the following:

6

y(b)− y(a) ≤ w(a, b) if (a, b) ̸∈M, (2)
y(a)− y(b) = w(a, b) if (a, b) ∈M. (3)

Additionally, their algorithm maintains the invariants that all free vertices of BF have the same
dual weight of ymax = maxv∈A∪B y(v) and all free vertices of A have the same dual weight of
0. The slack s(a, b) of any edge (a, b) ∈ (A × B) ∩ E is defined as follows: if (a, b) /∈ M , then
s(a, b) = w(a, b)− y(b) + y(a); otherwise, (a, b) ∈M and s(a, b) = 0.

In the original LR algorithm, the first stage adjusts the dual weights so that there is at least one
zero-slack augmenting path in GM . The second stage takes the subgraph consisting of zero slack
edges and repeatedly executes a DFS from s. This DFS stops early if a path to t, i.e., an augmenting
path, is found. After augmenting along a path, all edges visited by the DFS are deleted, unless they
were in an affected piece.

Note that the only fundamental difference between the original version of the LR algorithm and
our simplified version is the fact that we compute minimum-weight augmenting paths while they
compute zero-slack augmenting paths. The following lemma, whose proof appears in Section A of
the supplement, shows that the a zero slack path computed in the LR algorithm is also a minimum
weight path. It follows that the two versions of the algorithm are equivalent.
Lemma 1. During Stage 2 of the LR algorithm, an augmenting path has zero slack if and only if it
has minimum weight.

3 Applications

In this section, we show how our algorithm can be applied to efficiently compute a maximum
cardinality matching on a δ-disc graph, an optimal bottleneck matching, as well as the Lévy-Prokhorov
distance between distributions. All applications considered are for point sets A,B ⊂ R2. For all
applications, one can build a data structure D from Theorem 2 with Φ(n) = logO(1) n by using a
dynamic Euclidean nearest neighbor data structure; see Section H.3 of the supplement for details

3.1 δ-disc graph matching

Let P = A ∪B. Let B(p) be a ball centered at p with radius δ. Consider k = maxp∈R2 |B(p) ∩ P |,
i.e., k is the largest number of points of A ∪ B inside any ball of radius δ. We refer to k as the
δ-density of the point set P . We show that a maximum cardinality matching in a δ-disc graph can
be computed using our algorithm in Õ(n4/3k1/3) time. Thus, when the δ-density k = o(

√
n), our

algorithm outperforms the HK algorithm.
Theorem 3. For any point set P = A ∪B and a parameter δ > 0, a maximum cardinality matching
in the δ-disc graph defined on P can be computed in Õ(n4/3k1/3) time, where k is the δ-density of
P .

This result also extends to the case where the points of A and B are independently and identically
distributed random variables drawn from distributions PA and PB respectively. We say that a
distribution P has a δ-density of k if, for any ball B(p) of radius δ, the probability that a point drawn
from P lies inside the ball is at most k/n.
Theorem 4. Let A,B be drawn iid from distributions PA and PB respectively. For a parameter
δ > 0, a maximum cardinality matching in the δ-disc graph defined on A ∪B can be computed, with
high probability, in Õ(n4/3k1/3) time, where k is the maximum of the δ-density of PA and PB .

Proof of Theorem 3: We show how a set of separator edges can be generated so that ω =
O(n2/3k2/3) and r = O(n2/3/k1/3). From Theorem 2 and since n

√
r = O(n4/3/k1/6), n

√
ω =

O(n4/3k1/3), and, rω = O(n4/3k1/3), the execution time of the LR algorithm can be bounded by
Õ(n4/3k1/3). Next, we describe how to generate the separator edges ES .

We use a grid G to generate the separator edges. Any grid consists of a set of equispaced horizontal
and vertical lines that partition R2 into cells. Each cell is a square and any grid can be seen as a

7

set of these squares. Let L(G) denote the side-length of any cell C ∈ G. We say that a cell C is
non-empty if C ∩ P ̸= ∅. Let θ = ⌈n1/3/k2/3⌉. To generate our pieces, we choose a grid G where
the side-length of each cell is set to L(G) = θδ. The separator edge set ES consists of all edges of
the δ-disc graph that have their endpoints in different cells. All such edges are assigned a weight of 1.
Any edges whose endpoints are contained within the same cell of G are in E \ ES and are assigned
a weight of 0. Any point that has at least one separator edge incident on it becomes a boundary
vertex. To generate G, we check O(θ) possible vertical and horizontal shifts and pick the one that
minimizes the number of boundary vertices. We provide the details of generating G in Section B.1 of
the supplement. Our choice of G guarantees that ω = O(n2/3k2/3) for any point set, independent of
its δ-density. We show this in Section B.2 of the supplement.

Bounding r: By this definition, the number of vertices of any piece is bounded by the maximum
number of points that can lie inside any cell of G, i.e., maxC∈G |C ∩ P |. Note that we can cover
any cell of G with Θ(θ2) balls of radius δ each. Due to the δ-density of P being k, each of these
balls can contain at most k points and the total number of points inside any cell can be bounded by
O(θ2k) = O(n2/3/k1/3) as desired. In other words, r = O(n2/3/k1/3).

Proof of Theorem 4: The construction of the grid here will be identical to the one in the proof of
Theorem 3. Note also that the bound on ω provided in that proof depends only on the construction of
G and not on the δ-density of the point set. Therefore, the same bound continues to hold here as well.
In Section C of the supplement, we use the δ-density of PA and PB along with Chernoff’s bound to
prove that r = O(n2/3/k1/3) points with high probability.

3.2 Bottleneck distance

In this section, we assume that A and B are points drawn uniformly at random from a unit square.
From the work of Leighton and Shor [29], we know that, for appropriate constants cmin and cmax,
the optimal bottleneck distance is at least δmin = cmin log3/4(n)√

n
and at most δmax = cmax log3/4(n)√

n

with very high probability (probability exceeding 1 − 1/nα for some α = Ω(
√
log n)). Observe

that the optimal bottleneck distance will be equal to the length of some edge of A × B. As in the
work of Efrat et al. [13], our algorithm will use a selection algorithm of Katz and Sharir [21] to
find the jth smallest edge, 1 ≤ j ≤ n2 in O(n4/3 log2 n) time. Let d(j) be the length of the jth
smallest edge returned by their algorithm. This allows us to execute a binary search over the edges of
A×B, ordered by their length. Let gmin = 1 and gmax = n2. We repeat the following process until
gmax = gmin + 1: We choose j = ⌊(gmax + gmin)/2⌋ and find the jth smallest edge whose length is
denoted by d(j). If d(j) ≥ δmax, we set gmax ← j. If d(j) ≤ δmin, we set gmin ← j. Otherwise,
δmin ≤ d(j) ≤ δmax, and we find the maximum cardinality matching in a δ-disc graph where δ is
set to d(j). If we obtain a perfect matching, we set gmax = j. Otherwise, the maximum matching is
not perfect, and we set gmin = j. When the algorithm terminates, d(gmax) is the optimal bottleneck
distance.

Analysis: The algorithm makes O(log n) many guesses. These guesses are found by a selection
algorithm that runs in O(n4/3 log2 n) time. For each guess j where δmin ≤ d(j) ≤ δmax, we must
compute a maximum-cardinality matching on a δ-disc graph, which takes O(n4/3k1/3) time using
the LR algorithm. Since, P(A) and P(B) are the uniform distribution, their δ-density increases as δ
increases. Therefore, the δmax-density of P(A) and P(B) will be an upperbound on the δ-density
for any execution of the LR algorithm. The probability that any random point lies within any ball
of radius δmax is at most (2δmax)

2, which is Θ(log3/2(n)/n). Therefore, the δmax-density of P(A)

and P(B) is at most k = O(log3/2(n)). Applying Theorem 4 gives the following:

Theorem 5. Let A,B be drawn uniformly at random from a unit square. An optimal bottleneck
matching can be computed between A and B, with high probability, in Õ(n4/3) time.

Practical considerations: The algorithm described uses two black-boxes that are impractical and
have hidden high constants in the Big-O notation. (a) the algorithm relies on a dynamic nearest
neighbor data structure, and, (b) the algorithm uses the selection algorithm of Katz and Sharir [21].
In Section D of the supplement, we address both (a) and (b) by presenting more practical alternatives.

8

3.3 Lévy-Prokhorov distance

In this section, we show that we can use our algorithm for the δ-disc graph matching to also compute
the Lévy-Prokhorov distance.

We describe a simple algorithm to decide if π(PA,PB) greater than or at most ε. We compute a
maximum cardinality matching M in an ε-disc graph. Let AF and BF be the free vertices with
respect to M . Then, we say that the distance is greater than ε if |AF | > εn. Otherwise, we say that
the distance is at most ε. Using a binary search similar to the one described in Section 3.2, we can
determine the distance in Õ(n4/3k1/3) time.

Proof via Hall’s theorem: Given any bipartite graph G(A ∪ B,E), for any set X ⊆ A, the
neighborhood N (X) is the set of all vertices of B that share an edge with at least one vertex of X .
Thus, Xε is the neighborhood of X in an ε-disc graph. The deficiency of a graph with respect to A is
µ(A) = maxX⊆A |X| − N (X). Hall’s theorem says that a bipartite graph has a perfect matching
if and only if the deficiency of the graph with respect to A is non-positive. Hall’s theorem can be
generalized to the following.
Lemma 2. For any bipartite graph G(A ∪B,E), where |A| = |B| = n, and for any integer k > 0,
the deficiency with respect to A or B is k if and only if the maximum cardinality matching is of size
n− k.

The proof of this generalization follows in a straight-forward way from the Hall’s theorem. For the
sake of completion, we provide this proof in Section E of the supplement. Next, we show that the
algorithm described here correctly computes the Lévy-Prokhorov distance.

Recollect that, our algorithm returns the distance to be greater than ε if |AF | > εn. By Lemma 2,
we conclude that the deficiency of the graph is greater than εn, i.e., there is a set X ⊆ A such that
|X| − |Xε| > εn. Thus, Equation 1 does not hold and the distance is greater than ε.

Our algorithm returns a distance at most ε if |AF | ≤ εn. In this case, from Lemma 2, the deficiency
of the graph with respect to A is less than εn, i.e., for every subset X ⊆ A, |X| − |Xε| ≤ εn. Note
that |AF | = |BF | ≤ εn and so an identical argument applies for B as well. Thus, Equation 1 holds
and the distance is at most ε. We conclude that the algorithm terminates with the correct ε.
Theorem 6. Let the point sets A and B, |A| = |B| = n describe two distributions PA and PB where
each point has a probability of 1/n associated with it. The Lévy-Prokhorov distance π(PA,PB) can
be computed in Õ(n4/3k1/3) time where k is the δ-density of A ∪B.

4 Experimental results

In this section, we compare the performance of the HK algorithm and our algorithm when applied to
computing an exact bottleneck matching between equal-sized point sets A,B ⊂ R2 drawn uniformly
at random from a unit square, where n = |A|+ |B|.
Experimental setup: For each value of n in {100, 1000, 5000, 10000, 50000, 100000, 500000,
1000000, 1500000}, we execute 10 runs. For each run, we uniformly sample points from a unit
square to obtain the point sets A and B. Next, we compute a bottleneck matching between A and
B separately, using both the HK algorithm and our algorithm, and record performance metrics for
both algorithms. We execute our experiments on a server running CentOS Linux 7, with 12 Intel
E5-2683v4 cores and 128GB of RAM.3

When guessing the bottleneck distance for each run, instead of enforcing that the number of guesses is
O(log n) it is sufficient in practice to continue the binary search on δ until the relative error becomes
less than a sufficiently small value ε (see Section D of the supplement). Both the HK-based algorithm
and our algorithm use the same strategy for guessing the bottleneck distance in the experiments.

Experimental results: For each figure, the data presented for each value of n is averaged over all 10
runs. Error bars represent a single standard deviation. Figure 1 presents the actual running time of
both algorithms, summed over all guesses of the bottleneck distance. For datasets with more than
106 points, our algorithm takes roughly half as much time as the HK algorithm and the gap seems
to grow as the input size increases. However, the actual running times can be affected by several

3Our implementations of our algorithm and HK can be found at https://github.com/nathaniellahn/JOCGV3

9

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
points 1e6

0

1000

2000

3000

4000

5000

6000

7000

Ru
nn

in
g

tim
e

(s
ec

on
ds

)
(a

ll
gu

es
se

s)

HK
LR

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
points 1e6

0.0

0.2

0.4

0.6

0.8

1.0

ed

ge
s e

xp
lo

re
d

(a
ll

gu
es

se
s)

1e10
HK
LR

Figure 1: A running time comparison between the HK algorithm and our algorithm. Left: Comparison
of actual running time. Right: Comparison of total number of edge visits.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
points 1e6

0

50

100

150

200

250

300

Ph

as
es

(la
st

 g
ue

ss
)

HK
LR

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

points
1e6

2.5

3.0

3.5

4.0

sq
rt(

n)
 /

ph

as
es

HK ratio

Figure 2: Data for number of phases for the final bottleneck guess. Left: A comparison of the number
of phases for the HK algorithm and our algorithm. Right:

√
n divided by the number of phases

executed by the HK algorithm.

factors including the exact implementation details and execution environment. Therefore, we focus
on comparing metrics that are accurate independent of the exact implementation details. Recall that
both algorithms combine variants of BFS and DFS to compute augmenting paths. As a result, the
total number times edges are visited during each algorithm acts as an implementation-independent
proxy of the running time. Figure 1 shows the total number of edge visits for both algorithms. Note
that this data seems to follow a similar trend to the actual running times of the algorithms.

Next, we summarize our observations that help account for this difference in performance of the
two algorithms. For more details, see Section G of the supplement. Recall that there are four main
differences (1) – (4) between the HK algorithm and our algorithm. As discussed in Section F of the
supplement, differences (1) – (3) do not have any direct significant impact on the relative running
times of the two algorithms; the most significant difference is (4) – Stage 2 of the our algorithm
reuses edges from affected pieces. This reuse of edges has two main effects on the efficiency of the
our algorithm. First, we find that our algorithm executes significantly fewer phases than the HK
algorithm. Specifically, as the guess of the bottleneck distance approaches the actual bottleneck
distance, our results suggest that the number of phases executed by the HK algorithm seems to grow
at a rate of Θ(

√
n) – exhibiting its worst-case analysis. In contrast, the number of phases executed by

our algorithm grows at a much slower rate (see Figure 2). This explains why the our algorithm runs
faster than the HK algorithm. The second impact of allowing for edge revisits is that a single edge
can be revisited, perhaps many times, during a single phase. Despite this, the total number of edges
visited by our algorithm is still significantly less than the total number of edges visited by the HK
algorithm (see Figure 1).

5 Conclusion

We consider the maximum cardinality matching problem and present a simplification of a recent
algorithm by Lahn and Raghvendra [28]. In particular, we eliminate the need to maintain dual
weights in their algorithm. This not only leads to a simpler algorithm but also results in new and
improved exact algorithms for computing the δ-disc graph matching, bottleneck matching, as well
as the∞-Wasserstein and the Lévy-Prokhorov distances, in low-density settings. We would like to
conclude by stating the following open question: Can we design a parallel combinatorial algorithm to
compute a δ-disc graph matching?

10

Acknowledgements We would like to acknowledge, Advanced Research Computing (ARC) at
Virginia Tech, which provided us with the computational resources used to run the experiments.
Research presented in this paper was funded by NSF CCF-1909171. We would like to thank the
anonymous reviewers for their useful feedback.

References
[1] A. Adcock, D. Rubin, and G. Carlsson, Classification of hepatic lesions using the matching

metric, Computer vision and image understanding, 121 (2014), 36–42.

[2] J. Altschuler, J. Weed, and P. Rigollet, Near-linear time approximation algorithms for optimal
transport via sinkhorn iteration, Neural Information Processing Systems, 2017, pp. 1961–1971.

[3] M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein GAN, arXiv:1701.07875v3 [stat.ML],
(2017).

[4] M. K. Asathulla, S. Khanna, N. Lahn, and S. Raghvendra, A faster algorithm for minimum-cost
bipartite perfect matching in planar graphs, ACM Trans. Algorithms, 16 (2020), 2:1–2:30.

[5] J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré, Iterative bregman projections
for regularized transportation problems, SIAM Journal on Scientific Computing, 37 (2015),
A1111–A1138.

[6] E. Bernton, P. E. Jacob, M. Gerber, and C. P. Robert, On parameter estimation with the
Wasserstein distance, Information and Inference: A Journal of the IMA, 8 (2019), 657–676.

[7] G. Beugnot, A. Genevay, K. Greenewald, and J. Solomon, Improving approximate optimal
transport distances using quantization, arXiv preprint arXiv:2102.12731, (2021).

[8] J. Bigot, R. Gouet, T. Klein, A. López, et al., Geodesic PCA in the wasserstein space by convex
PCA, Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, Vol. 53, Institut Henri
Poincaré, 2017, pp. 1–26.

[9] J. Blanchet, A. Jambulapati, C. Kent, and A. Sidford, Towards optimal running times for optimal
transport, arXiv:1810.07717 [cs.DS], (2018).

[10] M. Cuturi and A. Doucet, Fast computation of wasserstein barycenters, International Conference
on Machine Learning, 2014, pp. 685–693.

[11] R. M. Dudley, Distances of probability measures and random variables, The Annals of Mathe-
matical Statistics, 39 (1968), 1563–1572.

[12] P. Dvurechensky, A. Gasnikov, and A. Kroshnin, Computational optimal transport: Complexity
by accelerated gradient descent is better than by sinkhorn’s algorithm, International Conference
on Machine Learning, 2018, pp. 1366–1375.

[13] A. Efrat, A. Itai, and M. J. Katz, Geometry helps in bottleneck matching and related problems,
Algorithmica, 31 (2001), 1–28.

[14] R. Flamary, M. Cuturi, N. Courty, and A. Rakotomamonjy, Wasserstein discriminant analysis,
Machine Learning, 107 (2018), 1923–1945.

[15] H. N. Gabow and R. E. Tarjan, Faster scaling algorithms for network problems, SIAM Journal
on Computing, 18 (1989), 1013–1036.

[16] A. L. Gibbs and F. E. Su, On choosing and bounding probability metrics, International statistical
review, 70 (2002), 419–435.

[17] F. Godi, Bottleneck distance, in: GUDHI User and Reference Manual, GUDHI Editorial Board,
3.4.1 edition, 2021.

[18] J. E. Hopcroft and R. M. Karp., An n5/2 algorithm for maximum matchings in bipartite graphs.,
SIAM Journal on Computing, 2 (1905), 1973–231.

11

[19] P. J. Huber, Robust Statistics, New York: John Wiley and Sons, 1981.

[20] M. L. Huson and A. Sen, Broadcast scheduling algorithms for radio networks, Proceedings of
MILCOM’95, Vol. 2, IEEE, 1995, pp. 647–651.

[21] M. J. Katz and M. Sharir, An expander-based approach to geometric optimization, SIAM Journal
on Computing, 26 (1997), 1384–1408.

[22] M. Kerber, D. Morozov, and A. Nigmetov, Geometry helps to compare persistence diagrams,
Journal of Experimental Algorithmics (JEA), 22 (2017), 1–20.

[23] S. Kolouri, K. Nadjahi, U. Simsekli, R. Badeau, and G. Rohde, Generalized sliced wasserstein
distances, Advances in Neural Information Processing Systems (H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), Vol. 32, Curran Associates, Inc.,
2019.

[24] H. W. Kuhn, The hungarian method for the assignment problem, Naval Research Logistics
Quarterly, 2 (1955), 83–97.

[25] T. Lacombe, M. Cuturi, and S. Oudut, Large scale computation of means and clusters for
persistence diagrams using optimal transport, Advances in Neural Information Processing
Systems (S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
eds.), Vol. 31, Curran Associates, Inc., 2018.

[26] N. Lahn, D. Mulchandani, and S. Raghvendra, A graph theoretic additive approximation of
optimal transport, Advances in Neural Information Processing Systems 32, 2019, pp. 13813–
13823.

[27] N. Lahn and S. Raghvendra, A faster algorithm for minimum-cost bipartite matching in minor-
free graphs, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
2019, pp. 569–588.

[28] N. Lahn and S. Raghvendra, A weighted approach to the maximum cardinality bipartite matching
problem with applications in geometric settings, Journal of Computational Geometry, 11 (2021).
Special Issue of Selected Papers from SoCG 2019.

[29] F. T. Leighton and P. W. Shor, Tight bounds for minimax grid matching, with applications to
the average case analysis of algorithms, Proceedings of the 18th Annual ACM Symposium on
Theory of Computing, ACM, 1986, pp. 91–103.

[30] T. Lin, N. Ho, and M. I. Jordan, On efficient optimal transport: An analysis of greedy and
accelerated mirror descent algorithms, arXiv:1901.06482 [cs.DS], (2019).

[31] A. Madry, Navigating central path with electrical flows: From flows to matchings, and back,
54th Annual IEEE Symposium on Foundations of Computer Science, 2013, pp. 253–262.

[32] R. Motwani, Average-case analysis of algorithms for matchings and related problems, J. ACM,
41 (1994), 1329–1356.

[33] M. Mucha and P. Sankowski, Maximum matchings via gaussian elimination, 45th Annual IEEE
Symposium on Foundations of Computer Science, 2004, pp. 248–255.

[34] Y. V. Prokhorov, Convergence of random processes and limit theorems in probability theory,
Teor. Veroyatnost. i Primenen., 1 (1956), 177–238. [English translation: Theory Probab. Appl. 1
(1956), 157-214].

[35] K. Quanrud, Approximating optimal transport with linear programs, Symposium on Simplicity
of Algorithms, Vol. 69, 2019, pp. 6:1–6:9.

[36] R. Sandler and M. Lindenbaum, Nonnegative matrix factorization with earth mover’s distance
metric for image analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence,
33 (2011), 1590–1602.

[37] P. W. Shor and J. E. Yukich, Minimax Grid Matching and Empirical Measures, The Annals of
Probability, 19 (1991), 1338 – 1348.

12

[38] V. Strassen, The existence of probability measures with given marginals, The Annals of Mathe-
matical Statistics, 36 (1965), 423–439.

[39] J. van den Brand, Y. T. Lee, Y. P. Liu, T. Saranurak, A. Sidford, Z. Song, and D. Wang, Minimum
cost flows, mdps, and ℓ1-regression in nearly linear time for dense instances, 2021.

[40] S. Vishwanath, K. Fukumizu, S. Kuriki, and B. K. Sriperumbudur, Robust persistence diagrams
using reproducing kernels, Advances in Neural Information Processing Systems (H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, eds.), Vol. 33, Curran Associates, Inc., 2020,
pp. 21900–21911.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Any limitations of the work

should be apparent from the descriptions of the relevant problem statements that have
been included.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] We are
not aware of any potential negative societal impacts of this work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] Our paper does not involve human subjects or sensitive data, and we are
not aware of any relevant ethical concerns.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] Some proofs are

included in the supplemental materials.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A] Our experiments are focused on analyzing running times of
algorithms, and are not concerned with training on data sets.

(c) Did you report error bars (e.g., with respect to the random seed after running ex-
periments multiple times)? [Yes] For applicable charts, we included error bars that
represent a single standard deviation.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A] We do not use

existing assets.
(b) Did you mention the license of the assets? [N/A] We do not use existing assets.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We include code in the supplemental materials.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We did not use existing data.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] Our only input data consists of randomly
generated geometric points.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

A Proof of Lemma 1

During Stage 2 of LR algorithm, an augmenting path has zero slack if and only if it has minimum
weight.

Proof. Let M,y(·) be matching and set of dual weights that are feasible. At any point during the
original version of the LR algorithm, consider any augmenting path P in GM whose first vertex is b′
and whose last vertex is a′. Then, it follows that,∑︂

(u,v)∈P

w(u, v) =
∑︂

(b,a)∈P\M

(y(b)− y(a) + s(b, a)) +
∑︂

(a,b)∈P∩M

(y(a)− y(b))

=y(b′)− y(a′) +
∑︂

(u,v)∈P

s(u, v)

=ymax +
∑︂

(u,v)∈P

s(u, v).

The last equality follows from the invariant that all free vertices of BF have the same dual weight
ymax and all vertices of AF have a dual weight of 0. Since all slacks are non-negative, an augmenting
path has minimum weight if and only if it has zero slack.

B Omitted details for proof of Theorem 3

B.1 Grid generation

Next, we describe how to generate the grid G. Without loss of generality, we assume that the points
are contained inside a bounding box whose bottom left corner has coordinates (θδ, θδ) and whose
top right corner has coordinates (∆,∆), where ∆ is of the form tθδ for some integer value t, i.e.,
when we choose G, the number of vertical and horizontal lines will be t each.

Consider another grid Gδ where each cell C ∈ Gδ has a side-length of δ. Let Y = {y1, . . . , yt} be
the set of vertical lines that define Gδ. For 1 < i < t, let µi be the number of points of P that lie
between the vertical lines yi−1 and yi+1; µ1 and µt are defined to be 0. For any subset Y ⊂ Y, let
µ(Y) denote

∑︁
yi∈Y µi. We generate θ different candidates for the vertical lines of G as follows: For

0 ≤ i < θ, let Yi be a set of vertical lines that are spaced θδ apart. The left-most line is given by
x = iδ and Yi = {x = iδ + jθδ | 0 ≤ j < t − 1}. In other words, the set Y is partitioned into θ
groups. We pick the set Yi that minimizes µ(Yi). This can be done in O(n log n) time. A symmetric
construction also applies for choosing the set of horizontal lines. G is the grid resulting from the
selected horizontal and vertical lines.

B.2 Bound on ω

Bounding ω: We will show that ω = O(n2/3k2/3). For any vertical line yi ∈ Y, any edge of
length at most δ that crosses yi will have its end points between yi−1 and yi+1. Therefore, if
yi is chosen as a vertical line for G, then µi will be an upper bound on the number of boundary
vertices whose edges cross yi. Thus, if Yi is chosen as the set of vertical lines of G, then µ(Yi)
will be an upper bound on the number of boundary vertices created in G due to the vertical lines.
For any point p, let yi and yi+1 be the vertical lines between which p lies. Then p contributes to
µi and µi+1. Thus,

∑︁
yi∈Y µi ≤ 2n. Since each yj ∈ Y participates in exactly one subset Yi,

min0≤i<θ µ(Yi) ≤ (1/θ)
∑︁

0≤i<θ µ(Yi) = (1/θ)
∑︁

yj∈Y µj ≤ 2n/θ. Since θ = ⌈n1/3/k2/3⌉,
we get a bound on the total number of boundary vertices formed due to the vertical lines to be
O(n2/3k2/3). An identical argument bounds the number of boundary vertices created due to the
horizontal lines to be O(n2/3k2/3) leading to ω = O(n2/3k2/3) as desired.

C Bound on r in proof of Theorem 4

We bound the number of points of A in any piece by O(n2/3/k1/3). An identical argument also
applies for B. Let C ⊆ G be the subset of cells of G that contain a non-zero probability with respect

15

to distribution PA. Since the δ-density of PA is k, and any cell of G can be covered by O(θ2) balls
of radius δ, the total probability within any cell is O(1/(k1/3n1/3)). We partition the cells in C
into Θ(n1/3k1/3) groups where each group has a total probability density of Θ(1/(n1/3k1/3)). For
each group of cells, we show that with high probability that it contains at most Θ(n2/3/k1/3) points.
Then, we apply union bound on the Θ(n1/3k1/3) groups to show that no group contains more than
cn2/3/k1/3 points, for some constant c.

Fix a group of cells C. Recollect that C ⊂ C and the total probability density for all cells of C
combined in Θ(1/(n1/3k1/3)) = c′/(n1/3k1/3) for some constant c′ > 0. Now define a random
variable X to be 1 if a point p chosen from the distribution PA is inside one of the cells in the group
C. Otherwise, if p is not contained in any of the cells from the group C, then X is 0. Note that X is
a Bernoulli random variable with p = c′/n1/3k1/3. Now, consider the n points chosen independently
from PA. Let Xi be the outcome of the ith point. Then, Y =

∑︁n
i=1 Xi would be the number of

points of A inside any of the cells of the group C.

Since E[Xi] = c′/(k1/3n1/3)) and from linearity of expectation, we conclude that E[Y] =
E[
∑︁n

i=1 Xi] =
∑︁n

i=1 E[Xi] = c′n2/3/k1/3. Applying Chernoff’s bound,

Pr[Y > 2c′n2/3/k1/3] ≤ e−c′n2/3/k1/3

.

Thus, by applying union bounds on the Θ(n1/3k1/3) groups, we get that with probability at least
1− (n1/3k1/3

en
2/3/k1/3) no cell of the grid G contains more than 2c′n2/3/k1/3 many points.

D Practical considerations

Recall that the algorithm of Section 3.2 uses two black-boxes that are impractical and have hidden
high constants in the Big-O notation. (a) the algorithm relies on a dynamic nearest neighbor data
structure, and, (b) the algorithm uses the selection algorithm of Katz and Sharir [21]. In order to
address (a), we observe that each vertex has an expected degree of O(k) = O(log3/2(n)). Therefore,
it is acceptable to explicitly compute the roughly m = O(n log3/2(n)) edges of the δ-disc graph and
apply standard O(m) time graph search algorithms.

We use the following approach to explicitly construct the edges of the δ-disc graph: Let Ĝ be a
arbitrarily-placed grid with each cell having side-length δ. For any point a ∈ A, let N(a) be the set
of all cells of Ĝ whose boundary is within a distance of δ from a. Note that N(a) contains exactly 9
cells – the cell containing a itself along with its 8 adjacent neighbors. Any point b within a distance
δ of a must lie within one of the cells of N(a). Therefore, it is sufficient to enumerate, for every
cell □ ∈ N(a), every point b ∈ B ∩□, and add (a, b) to the δ-disc graph if and only if the distance
between a and b is at most δ.

To implement this algorithm for edge-generation, we must be able to compute a bidirectional mapping
between an input point and the grid cell that contains the point. To facilitate this mapping, we use the
following approach: First, sort the points of A∪B by their x-coordinates. Each non-empty column in
the grid corresponds to a contiguous interval of points in this x-sorted list. For each such column, sort
the points within the corresponding x-sorted interval by their y-coordinates. Next further divide each
column interval of the x-sorted list into non-empty rows by further splitting the x-sorted intervals
into y-sorted intervals (within each column). Given any cell □, the points contained within □ can
be found by first binary searching through the x-sorted intervals in order to find the list of points
within the column of □, and then binary searching through the y-sorted intervals of this column in
order to find the corresponding interval for the row of □. Thus, given the bounds of a cell □ ∈ Ĝ,
the points of (A ∪B) ∩□ can be found in O(log n) time. Furthermore, as these intervals are being
constructed, the algorithm stores, along with each point, the boundary region of grid cell that contains
that point. Thus, a point can be mapped to its containing grid cell in O(1) time. Note that the set
of intervals can be computed using O(n) space (since empty rows and columns need not have a
corresponding interval) and O(n log n) time. As a result, the total time spent constructing the δ-disc
graph is O(n log n+

∑︁
a∈A

∑︁
□∈N(a) |B ∩□|). Since the δ-disc graph has a δ-density of O(log3/2)

with high probability, and the cells of N(a) can be covered by O(1) discs of radius δ, the δ-disc
graph creation algorithm runs in Õ(n) time.

16

In order to address (b), instead of executing an integer binary search over the n2 edges of A × B,
we simply execute a binary search over the interval [δmin, δmax]. Initially, we set gmin ← δmin and
gmax ← δmax. We repeat the following process until δmax ≤ δmin + ε for a sufficiently small error
parameter ε. For a guess δ = (gmax + gmin)/2, we compute a maximum-cardinality matching on the
δ-disc graph. If the result is a perfect matching, we set gmax ← δ. Otherwise, we set gmin ← δ. This
algorithm terminates after O(log 1

ε) iterations, where each iteration executes our algorithm. Under
the reasonable assumption that ε = 1/nO(1), the number of iterations remains only O(log n).

E Proof of Lemma 2

Recollect that for any bipartite graph G(A ∪B,E) and for any set X ⊆ A, the neighborhood N (X)
is the set of all vertices of B that share an edge with at least one vertex of X . The deficiency of a
graph with respect to A is µ(A) = maxX⊆A |X| − N (X). Hall’s theorem says that a maximum
cardinality matching in a bipartite graph matches every vertex of A if and only if the deficiency of
the graph with respect to A is non-positive. Using this, we will show the following lemma.

Lemma: For any bipartite graph G(A ∪ B,E), where |A| = |B| = n, and for any integer k > 0,
the deficiency with respect to A or B is k if and only if the maximum cardinality matching is of size
n− k.

Proof: We begin by proving (i) and (ii) and then use it to prove the lemma.

(i) Suppose the deficiency of the graph with respect to A is k, then we will show that any
matching has a cardinality at most n − k. From the definition of deficiency, there is a
subset X ⊆ A such that |X| − |N (X)| = k. In any maximum cardinality matching M , the
vertices of X can only match to a vertex in the neighborhood N (X). Since, there are k
fewer neighbors, at least k vertices in X will remain unmatched in M , i.e., |M | ≤ n− k.

(ii) If the maximum cardinality matching M is of size n − k, then we will show that the
deficiency of the graph is at most k. We add k dummy vertices to the set B and connect them
to every vertex of A. As a result, the new graph will now match every vertex of A: every
vertex of A that was unmatched with respect to M will now match to a dummy vertex of B.
By Hall’s theorem, the deficiency of this graph with respect to A is 0. Note, however, that
the dummy vertices raised the deficiency of every subset X ⊂ A by exactly k. Therefore,
the deficiency of the graph prior to adding the dummy vertices is at most k.

Suppose the deficiency of a graph is k. From (i), the maximum cardinality matching is of size
≤ n − k, say n − k′ for some k′ ≥ k. Since the maximum cardinality matching is of size n − k′,
from (ii), we conclude that the deficiency of the graph is at most k′, i.e., k ≤ k′. Since both k ≥ k′

and k ≤ k′, we get k = k′ and the maximum cardinality matching is of size exactly n− k.

F Details of differences between the HK algorithm and our algorithm

Recall that the HK algorithm and our algorithm differ in the following three ways: (1) The LR
algorithm assigns weights of 0 and 1 to the edges. No weights are assigned in the HK algorithm. (2)
The LR has a preprocessing step that computes the maximum cardinality matching for each piece.
(3) In Stage 1, the LR algorithm executes a 0/1-BFS instead of the BFS executed by HK algorithm.
Next, we explain why these three differences do not have any significant effect on the comparative
running times of the two algorithms. In (1), for any edge (u, v), one can determine whether (u, v) is
in ES in O(1) time. In (2), the LR algorithm executes the HK algorithm for each piece each of which
contains at most r vertices. The time taken across all pieces is

∑︁t
i=1 O(|Ei|

√︁
|Vi|) = O(m

√
r).

In (3), the 0/1 BFS executed in Stage 1 of the algorithm is almost identical to the BFS executed
by the HK algorithm, except that it prioritizes weight 0 edges before the weight 1 edges. It can be
implemented to take O(m) time.

G Additional experimental results

Recall that there are four main differences between the HK algorithm and our algorithm. Our
algorithm must incorporate weights of 0 and 1 into the edges. For arbitrary inputs, the δ-disc graph

17

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
points 1e6

0

50

100

150

200

250

300

Ph

as
es

(la
st

 g
ue

ss
)

HK
LR

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

points
1e6

2.5

3.0

3.5

4.0

sq
rt(

n)
 /

ph

as
es

HK ratio

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
points 1e6

1.5

2.0

2.5

3.0

3.5

4.0

4.5

n^
{1

/3
}

/ #
 p

ha
se

s
(la

st
 g

ue
ss

)

LR ratio

Figure 3: Comparisons of number of phases for the final bottleneck guess. Left: A comparison of the
number of phases for the HK algorithm and our algorithm. Middle:

√
n divided by the number of

phases executed by the HK algorithm. Right: n1/3 divided by the number of phases of our algorithm.
Note that the first two plots also appear in Figure 2.

matching algorithm tries several shifts of a grid in order to minimize the value of ω. However,
in practice, taking a single random shift of the grid is sufficient for finding a small number of
boundary vertices in expectation. Recall that, given this shift, the corresponding δ-disc graph can be
created in Õ(n) time, which is asymptotically far less than the overall complexity of our algorithm.
An additional difference between the HK algorithm and our algorithm is that the our algorithm
begins with a preprocessing step, which executes the HK algorithm within each piece. However,
this step takes asymptotically less time than the subsequent phases of the algorithm (see Figure 4).
Additionally, our experiments found that the total time taken by the edge weight assignment and
preprocessing step was insignificant in comparison to the total time taken by our algorithm. The third
difference between the HK algorithm and our algorithm is the fact that the our algorithm executes a
0/1 BFS, which is slightly different from the version of BFS used by the HK algorithm. Within each
phase, the 0/1 BFS can be implemented to run in O(m) time without any significant difference in
performance in comparison to the HK algorithm’s BFS.

The fourth and final difference between the two algorithms is that our algorithm finds augmenting
paths during Stage 2 that are not necessary vertex-disjoint. While the first three differences do not
have any significant direct impact on the running time, this final difference is of primary importance.
There are two main effects of finding non-disjoint augmenting paths. First, more augmenting paths
can be found during each phase, which decreases the number of phases that need to be run, decreasing
the relative running time of our algorithm. However, a second effect is that edges may be revisited
multiple times during Stage 2 of the same phase of our algorithm, increasing the relative running
time of our algorithm.

Next, we present results that illustrate this dynamic in practice. First, we find that our algorithm
executes significantly fewer phases than the HK algorithm. Also, as the guess of the bottleneck
distance approaches the actual bottleneck distance, both algorithms seems to exhibit close to their
worst case theoretical upper bounds of O(

√
n) and O(n1/3) respectively for their number of phases

(see Figure 3).

Finally, to better understand the running time of our algorithm, we divide the edge visits into three
groups - the edges visits that occur during the preprocessing step, the edge visits where an edge
is visited for the first time during a phase, and the times an edge is revisited during Stage 2 of a
particular phase. These results are given in Figure 4. Note that, from these results, we can conclude
that Stage 2 accounts for the majority of the running time, and most of the time taken during Stage 2
is due to revisits of edges.

H Details of dynamic nearest neighbor data structures

In this section, we provide additional details as to how the HK algorithm and our algorithm can be
implemented using dynamic nearest neighbor (DNN) data structures. Let G(V = A ∪B,E) be an
arbitrary undirected graph where every edge (u, v) ∈ E has a weight w(u, v) that is either 0 or 1. A
DNN structure D on the graph G stores a subset A′ ⊆ A of vertices. Given an arbitrary query vertex
b ∈ B, the data structure D returns a vertex a ∈ A′ that minimizes the weight of the edge (b, a) (i.e.,
returning weight 0 edges before weight 1 edges). If there is no edge directed from b to any a ∈ A′,
then the query returns NULL. The DNN D supports queries in Φ(n) time. Furthermore, D allows an

18

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

points
1e6

0

1

2

3

4

ed

ge
s e

xp
lo

re
d

(a
ll

gu
es

se
s)

1e9
Preprocessing
Stage 1
Stage 2
First time visits
Revisits within phase

Figure 4: A breakdown of the edge visit counts of our algorithm into categories. First time visits
occur whenever an edge is visited for the first time during a particular stage (either Stage 1 or Stage
2) of a phase; all subsequent visits to that edge during the same stage are revisits. Revisits only occur
during Stage 2.

arbitrary vertex a ∈ A \A′ to be inserted into A′ in Φ(n) time, and an arbitrary vertex a ∈ A′ to be
removed from A′ in Φ(n) time.

In section H.1, we explain how the HK algorithm can be implemented, using a DNN D, to run in
O(n3/2Φ(n)) time. In section H.2, we explain how our algorithm can be implemented to run in
O(Φ(n)(n

√
r + n

√
ω + rω log n)) time using a DNN D. In section H.3, we explain how such a

DNN can be implemented for δ-disc graphs.

H.1 HK algorithm using DNN

In this section, we describe how the HK algorithm can be implemented to run in O(n3/2Φ(n)) time
using a DNN data structure D. Note that the HK algorithm does not use the edge weights w(·, ·);
instead, queries to D are only necessary in order to identify an arbitrary edge of E from a query
vertex b ∈ B to a vertex a ∈ A′.

Stage 1: Next, we describe how the HK algorithm can use D to support BFS on the residual graph
GM in O(nΦ(n)) time. The purpose of this BFS is to identify, for any vertex v ∈ A ∪ B, the
minimum distance ℓv (in terms of total number of edges) from s to v in GM . During the BFS, let S
be the set of vertices in GM that have been explored by the BFS, and let T = V \ S be the set of
vertices that have not yet been reached by the BFS. Throughout the algorithm, the set A′ maintained
by the DNN data structure D will be equal to A ∩ T . Initially, S = {s}, T = A ∪B, and A′ = A.

Recall that a standard BFS can be implemented using a queue Q that contains vertices of V . In O(1)
time, a single vertex can be added to the tail of Q or removed from the head of Q. The queue Q
contains vertices that are partially explored and any vertex that is removed from Q is fully explored.
During each iteration of the BFS, let v be the vertex at the head of Q. If v ∈ A, then there is at
most one matching edge (v, b) directed from v to some b ∈ B. If b ∈ T , then the algorithm sets
ℓb ← ℓv + 1, removes b from T , adds b to S, and adds b to Q. Otherwise, if v ∈ B, then there could
be many edges outgoing from v in GM . We are only interested in edges directed from v to some
a ∈ A ∩ T . Conveniently, such a vertex a can be identified in O(Φ(n)) time by querying D. Given
such a vertex a, the algorithm sets ℓa ← ℓv + 1, removes a from T , removes a from A′, adds a to S,
and adds a to Q. If the query to D on v returns NULL, then all applicable neighbors of v have been
explored, and the algorithm removes v from Q.

Stage 2: Recall that Stage 2 of the HK algorithm conducts multiple DFS searches in order to find
augmenting paths in the admissible graphA, which contains all edges (u, v) in GM with ℓv = ℓu+1.
It may be prohibitively expensive to construct A explicitly, as it could have Θ(m) edges. Instead,
the algorithm will make use of multiple DNN data structures in order to efficiently identify the next
edge to explore during a DFS. Recall that ℓ = mina∈AF

is the minimum distance from s to any free
vertex of AF . For each even-valued i ∈ [1, ℓ] the algorithm maintains a DNN data structure Di. Each
such data structure Di contains a set A′

i ⊆ A, which initially contains all vertices a ∈ A with ℓa = i.
During Stage 2, if a vertex a ∈ A is reached during the DFS, the algorithm removes a from A′

ℓa
.

When the DFS is exploring neighbors of some b ∈ B, it will query Dℓb+1 on b. If the query returns a

19

vertex a ∈ A′
i, then (b, a) is an admissible edge, and a has not previously been reached by a DFS.

The algorithm removes a from A′
ℓa

and continues the DFS from a. If the query to Dℓb+1 returns
NULL, then no unexplored neighbors of b remain, and the DFS backtracks from b. Note that, like
during the BFS, any vertex a ∈ A has at most one outgoing edge, which is a matching edge. As a
result, the neighbors of any vertex a ∈ A can be considered explicitly, without need of a DNN data
structure.

Efficiency: To bound the running time of BFS using D, observe that each vertex of A is removed
from A′ at most once. Furthermore, whenever a query is made to D, either it returns NULL (which
only occurs at most once per vertex of B) or else a vertex is removed from A′. Therefore, just O(n)
operations are required on D. Similarly, during Stage 2, each vertex of A exists in at most one set A′

i,
and is removed from this set at most once. Therefore, Stage 2 also requires only O(n) operations on
DNN data structures, each of which take Φ(n) time. As a result, a single phase of the HK algorithm
can be implemented to take O(nΦ(n)) time. Over all O(

√
n) phases of the algorithm, the total time

taken is O(n3/2Φ(n)).

H.2 Our algorithm using DNN

In this section, given a DNN data structure on G, we explain how our algorithm can be made to run
in O(Φ(n)(n

√
r + n

√
ω + rω log n)) time. Most of the details are similar to the description of the

HK algorithm using a DNN data structure, so we will focus on highlighting the key differences.

Stage 1: For Stage 1, there is one key difference between the HK algorithm and our algorithm.
When selecting the next edge directed from S to T to explore, the HK algorithm ignores weights
while our algorithm must select an edge with weight 0 if one is present. In order to support this in
our algorithm, one option is to maintain two queues Q0 and Q1, each of which contain vertices of
A ∪B. During each iteration of the BFS, the algorithm identifies an edge from S to T by checking
Q0 first, and only checking Q1 if Q0 is empty. If Q0 is not empty, let u ∈ S be the head of Q0. If
u ∈ A, then the neighbors of u can be processed without using the DNN structure, so we consider
when u ∈ B. Then an edge of weight 0 directed from u ∈ S ∩B to v ∈ T ∩A can be identified, if
such an edge exists, by querying D. If the result is an edge with weight 0, then the algorithm sets
ℓv ← ℓu, adds v to Q0, adds v to S, and removes v from T . Otherwise, u is removed from Q0 and
added to Q1, and the algorithm continues to the next iteration. If Q0 is empty, then the vertex at the
head of Q1 is processed instead. In a similar fashion, an edge of weight 1 directed from u ∈ S ∩B
to some v ∈ T ∩A can be identified, if such an edge exists, by querying D. If the result is an edge
with weight 1, then the algorithm sets ℓv ← ℓu + 1, adds v to S, and removes v from T . Otherwise,
the algorithm removes u from Q1 and continues to the next iteration.

Stage 2: The second stage of our algorithm has two key differences from the second stage of the
HK algorithm that affect the use of the DNN structures: (i) Our algorithm can contain edges of weight
0 in the admissible graph A. (ii) Unlike the HK algorithm, which deletes all visited vertices at the
end of a single DFS, our algorithm only deletes the edges that did not participate in an affected piece.

To address (i), instead of making a data structure Di for only the even values of i, our algorithm
creates a DNN data structure Di for every i ∈ [1, ℓ]. When exploring a vertex b ∈ B during the DFS,
in order to identify an admissible edge outgoing from b, it is sufficient to query Dℓb as well as Dℓb+1.
If the query to Dℓb returns either NULL or a vertex a with w(b, a) = 1 then there are no admissible
edges from b to a vertex of Dℓb . Furthermore, if the query to Dℓb+1 returns a vertex a, then w(b, a)
must be 1; otherwise, if w(b, a) = 0, then a could have been reached via (b, a) during Stage 1, and
should have been included in Dℓb instead of Dℓb+1.

For addressing (ii), first note that, if an edge directed from u to v is deleted during our algorithm
(considering momentarily the version of our algorithm that does not use DNN structures), then u has
been visited by the previous DFS, but the previous DFS backtracked from u; otherwise, u would
participate in the augmenting path found by the DFS, contradicting the assumption that (u, v) was
deleted. Since the previous DFS backtracked from u, all remaining admissible outgoing edges from
u to a vertex of T have been explored. Furthermore, since u is not in an affected piece, no edge
incident on u is in an affected piece. Therefore, all admissible edges outgoing from u are deleted,
implying that u can be deleted as well. We conclude that, instead of deleting all the visited edges that
do not participate in affected pieces after a DFS, it is permissible to delete all of the visited vertices

20

that do not participate in affected pieces. This observation is applicable to an implementation of the
our algorithm with or without the use of DNN structures. Note, however, that there could be some
edges with weight 1 that were explored during the DFS for which both endpoints were in affected
pieces. Since edges with weight 1 are not inside affected pieces, such edges should be deleted. In
order to avoid reexploring these edges, whenever the algorithm backtracks from a vertex b ∈ B, that
vertex should, for the remainder of Stage 2, only query Dℓb ; it should no longer use Dℓb+1.

Given this information, we can now address (ii). Recall that, whenever the DFS reaches a vertex
a ∈ A, that vertex is removed from A′

ℓa
. For the purposes of querying the DNN, this corresponds to

deleting the vertex a. By the end of the DFS, any vertex of A that was explored has been removed
from its corresponding DNN structure. Thus, in order allow vertices in affected pieces to be explored
again, it suffices to re-insert the deleted vertices from affected pieces back into their corresponding
DNN structures. Specifically, as the DFS progresses, the algorithm maintains a set X of vertices of A
that have been reached. Whenever the DFS finishes, the algorithm will, for every a ∈ X , insert a
back into A′

ℓa
if a belongs to an affected piece. All other vertices of X are deleted for the remainder

of the phase.

Efficiency: For Stage 1, each vertex of A is removed from A′ at most once, and each query to D
results in either (i) the deletion of a vertex from A′, (ii) the removal of a vertex from Q0, or (iii) the
removal of a vertex from Q1. Sine each vertex is inserted into Q0 and Q1 at most once each, the
number of operations on D is O(n).

Next, we bound the time taken by Stage 2. First note that, when identifying an admissible outgoing
edge from a vertex b ∈ B, our algorithm makes two queries, one toDℓb and one toDℓb+1, as opposed
to the HK algorithm, which makes a single query. This difference does not asymptotically affect the
running time. Each such pair of queries causes at least one of the following to happen: (i) A vertex is
removed from Dℓb , (ii) a vertex is removed from Dℓb+1, or (iii) the DFS backtracks from the vertex b.
Also observe that the number of deletions from each of the DNN structures is upper bounded by its
total number of insertions.

During the second stage of a single phase, each operation on the DNN structures can be attributed
to a single vertex’s visitation, where each vertex visitation is responsible for O(1) operations. The
total number of vertex visits during Stage 2 of a single phase is O(n) plus the total number of revisits.
Recall that Lahn and Raghvendra bound the total number of affected pieces as ω logω [28]. Whenever
a piece is an affected piece with respect to an augmenting path, at most O(r) vertices are revisited
during that phase. Therefore, the total number of revisits during the entire algorithm is O(ωr logω).
With each vertex visit taking Φ(n) time, the total time taken by all O(

√
ω) phases of our algorithm is

O(Φ(n)(n
√
ω + rω log n)). However, we must also consider the time taken by the preprocessing

step. The preprocessing step can apply the HK algorithm, using the DNN structures as described in
Section H.1. Since each piece has O(r) vertices, the time taken by each piece is O(r3/2Φ(r)). Over
all pieces, the total time taken for preprocessing is O(n

√
rΦ(n)). Combining the time taken for the

preprocessing and the phases gives a total running time of O(Φ(n)(n
√
r + n

√
ω + rω log n)).

H.3 DNN for δ-disc graphs

The algorithms of sections H.1 and H.2 assume the existence of a dynamic nearest neighbor data
structure for graphs with edge weights of either 0 or 1 that maintains a set A′ ⊆ A and, for any query
vertex b ∈ B, returns a vertex a ∈ A′ that minimizes w(b, a), or else NULL if no edge exists between
b and any vertex of A′. In this section, we describe how to support such a data structure in the context
of δ-disc matching, considering point sets A,B ⊂ R2. It is known how to support a similar dynamic
nearest neighbor structure when every edge (a, b) ∈ A × B exists and has a weight equal to the
Euclidean distance between its endpoints. This Euclidean DNN supports insertions, deletions, and
queries in Φ′(n) = logO(1)(n) time. We describe how this Euclidean DNN can be used to support a
0/1 edge-weighted DNN in the context of the δ-disc matching algorithm described in Section 3.1.

Recall that, in the δ-disc graph matching algorithm, any edge whose endpoints are in the same piece
are assigned a weight of 0 and all other edges, whose endpoints lie in different pieces, are assigned a
weight of 1. To implement the operations of D, we construct a global Euclidean DNN structure D′

on the vertices of the entire graph, as well as a local Euclidean DNN structure D′
j on the vertices

within each piece Pj , 1 ≤ j ≤ t. The global data structureD′ maintains the same subset A′ asD, and

21

the data structure D′
j for each piece Pj maintains the subset A′ ∩ Vj , supporting queries on vertices

B ∩ Vj within the piece.

Given this setup, D supports queries on a vertex b ∈ B with respect to the set A′ as follows: Let Pj

be the piece that contains b. First, the algorithm will queryD′
j in order to obtain the point a ∈ A′∩Vj

that is closest to b within the piece. If the resulting Euclidean distance d(a, b) between a and b is
at most δ, then (a, b) exists in the δ-disc graph, and has a weight w(a, b) = 0. The data structure
returns a. Otherwise, there is no point a ∈ A′ ∩ Vj that is within a distance of δ from b, and we can
conclude that there are no weight 0 edges incident on b with respect to A′. In this case, the algorithm
proceeds to query the global data structure D′ in order to obtain a weight 1 edge incident on b. If D′

returns a point a ∈ A′ that is within a distance δ from the query b, then w(a, b) = 1, and D returns a.
Otherwise, there are no edges incident on B with respect to A′, and D returns NULL. To insert a
point a ∈ Vj into the set A′, the data structure D can simply insert a into both D′ and D′

j . Similarly,
a can be removed from A′ by removing a from both D′ and D′

j . Since each query, insertion, and
deletion operation on D requires only O(1) operations on corresponding Euclidean DNN structures,
each operation on D can be supported in Φ(n) = O(Φ′(n)) = logO(1)(n) time.

22

	Introduction
	Matching algorithms
	Preliminaries
	A simplified implementation of the LR algorithm

	Applications
	δ-disc graph matching
	Bottleneck distance
	Lévy-Prokhorov distance

	Experimental results
	Conclusion
	Proof of Lemma 1
	Omitted details for proof of Theorem 3
	Grid generation
	Bound on ω

	Bound on r in proof of Theorem 4
	Practical considerations
	Proof of Lemma 2
	Details of differences between the HK algorithm and our algorithm
	Additional experimental results
	Details of dynamic nearest neighbor data structures
	HK algorithm using DNN
	Our algorithm using DNN
	DNN for δ-disc graphs

